
WebRTC Implementation and Architecture Analysis

Kedar G. Pathare1, Pushpanjali M. Chouragade2
M.Tech Scholar1, Assistant Professor2

Department of Computer Science and Engineering
Government College of Engineering, Amravati

1kedarpathare@gmail.com, 2pushpanjalic3@gmail.com

Abstract—Web browsers are becoming powerful day-by-day,
with increased usage of interactive multimedia applications. Web
Real Time Communications is a standard to enable real time
multimedia feature in web browsers without the need of third
party plugins. The media capabilities of WebRTC standards are
state-of-the-art, with many new features. Features like
supporting peer-to-peer interactive multimedia communications
between web browsers. This paper analyzes implementation and
architecture of web real time communication (WebRTC) API
along with its limitations. It also analyzes the Trapezoid and
Triangle model of WebRTC architecture.

Keywords—WebRTC, peer-to-peer, real time communication,
browser communication. API.

I. INTRODUCTION
WebRTC is a set of standards from WC3 that will enable

real time communications (RTC) on the web between
browsers. Browsers like Firefox, Chrome and Opera natively
support WebRTC. Using WebRTC one can make peer-to-peer
calls, video chats, exchange files and share screens. WebRTC
enables users to build apps with the help of HTML5 and
JavaScript. Software tools are available to build very
compelling desktop and mobile apps. Any connected device—
computers, tablets, televisions can be WebRTC enabled, can
become a communications device. These tools are empowering
every user to build their own apps and include WebRTC
features. With the adoption of WebRTC API in browsers, the
web browsers will be able to communicate (peer-to-peer) with
one another, and with WebSocket servers. Early days web
browsers were required to download and install third party
plugins, like flash player, for real time communications. Third
party plugins does not provide security for data and
applications are also not trustworthy and standardized. The
compatibility for establishing a session is not assured between
two peers, if the peers are using browser plugins from different
vendors, or different browser vendors which prefers different
plugin vendors that reduce the success rate of session
establishment.

WebRTC supports browser-to-browser applications for
voice calling, video chat and peer-to-peer file sharing without
the requirement of either internal or external plugins. Web real
time communications (WebRTC) is a specification for
browsers to enable peer-to-peer communication. WebRTC is
being standardized by W3C WebRTC and IETF RTCWEB
working groups. IETF specifies the protocol level standards
[5] while W3C specifies the implementation specific features

in browsers. The real time communication of media is
independent of the browser vendors and applications are
platform independent. A WebRTC peer can establish a session
with that of a non WebRTC peer through gateways, though
the other peer does not support any of the standards specified
by WebRTC standardization like compatible codecs or
transport level security etc.

WebRTC aims to develop a communication framework for
web browsers that work on different platforms and devices. It
provides an API for JavaScript applications to establish,
modify and terminate sessions. It supports peer-to-peer
interactive multimedia communications like audio, text, video,
data, games etc. WebRTC supports many real time and non
real time use cases. WebRTC implements ICE to identify and
establish connection with peers behind Network Address
Translators (NAT) [8].

II. RELATED WORK
WebRTC is an open source project for browser based real

time communication released by Google in May 2011. This has
been followed by ongoing work to standardize the relevant
protocols in the IETF[4] and browser APIs in the W3C.[6] The
W3C draft of WebRTC is a work in progress with advanced
implementations in the Chrome and Firefox like browsers. The
WebRTC API is based on preliminary work done in the
WHATWG. It was referred to as the Connection Peer API, and
pre standards concept implementation was created at Ericsson
Labs. Previous W3C web standards allowed communication
only between a browser and a server, WebRTC allows direct
communication between browsers, without any server in the
middle. This theoretically allows for the implementation of
peer-to-peer algorithms such as Coolstreaming or GridMedia.
The WebRTC API currently by Google Chrome and Mozilla
Firefox consists of the following data communication
functions :

 RTCPeerConnection: The RTCPeerConnection
interface provides a connection between peers to
exchange data.

 MediaStream: The MediaStream interface represents
a stream of audio or video data.

 RTCDataChannel: The RTCDataChannel interface
describes a full-duplex data connection between two
nodes.

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 122

IJSER © 2016
http://www.ijser.org

IJSER

III. ARCHITECTURE
The classic web structural design are based on a client-

server model, where browsers send an HTTP (Hypertext
Transfer Protocol) request for content to the web server, which
replies with a response containing the information requested.
The server provides resources that are closely associated with
an entity known by a URI (Uniform Resource Identifier) or
URL (Uniform Resource Locator). In the web application
situation, the server can embed some JavaScript code in the
web page and sends back to the client. Such code can interact
with browsers through standard JavaScript APIs and with users
through the user interface.

A. WebRTC Architecture
WebRTC extends the client-server semantics by

introducing a peer-to-peer communication model between
browsers. The most general WebRTC architectural form draws
its idea from the so-called SIP (Session Initiation Protocol)
Trapezoid given in Figure 1.

Fig. 1. The WebRTC Trapezoid Model

In the WebRTC Trapezoid model, both browsers are
running a web application. Application is downloaded from a
different web server. Signaling messages are used to set up and
finish communications. They are transported by the HTTP or
WebSocket protocol via web servers that can modify, translate,
or manage them as needed. It is important to note that the
signaling between browser and server is not standardized in
WebRTC, as it is considered to be part of the application. As to
the data path or media path, a peer connection allows media to
transmit directly between browsers without any prevailing
servers. The two web servers can communicate using a
standard signaling protocol such as SIP or Jingle (XEP-0166).
Otherwise, they can use a proprietary signaling protocol. The
most common WebRTC scenario is likely to be the one where
both browsers are running the same web application,
downloaded from the same Web Server. In this case the

Trapezoid model becomes a Triangle model as shown in
Figure 2.

Fig. 2. The WebRTC Triangle Model

This arrangement is called a triangle due to the form of the
signaling (sides of triangle) and media or data transmits (base
of triangle) between the three elements. A Peer Connection
establishes the communication for voice and video media and
data channel transmits directly between the web browsers.

The connection between browsers sometimes referred as
signaling but the connection is not really signaling as used in
telephony systems. Signaling is not standardized in WebRTC.
It is just considered part of the application. This signaling may
run over WebSockets or HTTP to the same web server that
serves web pages to the browser, or to a completely different
web server that just handles the signaling.

B. WebRTC in Browser
A WebRTC web application (typically written as a mixture

of HTML and JavaScript language) interacts with web
browsers through the standardized WebRTC API, allowing it
to properly utilize and control the real-time browser function as
shown in Figure 3. The WebRTC web application also
interacts with the browser, using both WebRTC and other
standardized APIs, both proactively and reactively. The
WebRTC API must therefore provide a wide set of functions,
like connection management (in a peer-to-peer approach),
encoding/decoding capabilities negotiation, selection and
control, media control, firewall and NAT[8] element traversal,
etc.

The design of the WebRTC API does represent a
challenging issue. It envisages that a continuous, real-time flow
of data is streamed across the network in order to allow direct
communication between two browsers, with no further
mediators along the path. This clearly represents a innovative
approach to web-based communication. Let us imagine a real-
time video or audio call between two browsers.
Communication, in such a situation, might involve direct
media streams between the two browsers, with the media path

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 123

IJSER © 2016
http://www.ijser.org

IJSER

negotiated and instantiated through a complex sequence of
interactions.

Fig. 3. Browser Model

Figure 3 shows the browser model and the role of the real-
time communication function. The lighter block shows
“Browser RTC Function”. The unique nature and requirements
of real-time communications means that adding and
standardizing this block is non-trivial. The RTC function
interacts with the web application using standard APIs. It
communicates with the Operating System using the browser.

C. Signalling
WebRTC does not specify signaling methods to avoid

redundancy and to maximize compatibility with established
technologies. Unlike in native peer-to-peer applications where
nodes can establish connections by contacting their peers
directly, WebRTC requires the use of a separate signaling
channel to negotiate a connection. The signaling process
provides a level of security by eliminating the need for nodes
to keep ports open, and allows creative routing strategies to
enable peers behind NAT devices or firewalls to connect to
each other. The exact nature of the signaling channel is not
described by the WebRTC specification.

IV. LIMITATION OF WEBRTC
Currently WebRTC suffers from a number of limitations

which are outlined in the following. However, while we were
able to implement a prototype there were still multiple
restrictions involved:

 There is currently a interoperability issue between
browser. This led to implementation difficulties

among browsers. For example the library PeerJS
currently supports the Google Chrome browser only,
because WebRTC is implemented in Mozilla Firefox
differently.

 The browser implementations are currently in alpha or
beta status and as a result have a number of bugs and
may terminate unexpectedly.

 The WebRTC API does not yet offer functions for
connection management and establishment. Instead, a
second communication channel is necessary to
establish a connection. We were using
XmlHttpRequests and WebSockets to overcome this
limitation.

 Another problem for WebRTC technology is the list
of essential codecs. At the instant all the participating
companies have come to the agreement only on one
thing – WebRTC needs one main codec which will be
supported by all browsers and thus will be cross
platform.

V. CONCLUSION
WebRTC will help us to minimize the use of third party

plugins, improve the security of the contents in browser.
WebRTC is as innovatory a market disruption for telecom as
HTML was for the internet. Companies that are willing to
adopt this technology will have plentiful of business
opportunities. Although, no browser has completely
implemented the current WebRTC draft, it is likely that it will
be implemented in future releases. With the many peer-to-peer
applications and solutions that exist to date, WebRTC could
greatly empower the web applications of the future.

REFERENCES
[1] Kiran Kumar, Sachin Dev “WebRTC Implementation Analysis

and Impact of Bundle Feature” 2015 IEEE DOI
10.1109/CSNT.2015.45

[2] C. Holmberg, S. Hankansson, G. Eriksson, “Web Real-Time
Communication Use-Cases and Requirements”, IETF draft-ietf-
rtcwebuse-case-and-requirements-14, Febraury, 2014.

[3] Sam Dutton, “Getting Started with WebRTC”, Febraury 2014,
http://www.html5rocks.com/en/tutorials/webrtc/basics/.

[4] H.Alvestrand, “Overview: Real Time Protocols for Browser-
based Applications”, IETF draft-ietf-rtcweb-overview-11,
August 2014.

[5] Berkvist, A., Burnett, D., Jennings, C. Narayanan, A. (2011)
“WebRTC 1.0: Real-Time Communication Between Browsers”.
Working Draft.

[6] A Johnston, D. Burnett, “WebRTC: APIs and RTCWEB
Protocols of the HTML5 Real-Time Web”, Digital Codex, St.
Louis, Mo, 2012

[7] A Johnston, D. Burnett, “WebRTC: The Web Way to
Communicate”, WebRTC IEEE St. Louis & COMSOC April
2013

[8] J. Rosenberg “Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for
Offer/Answer Protocols”, IETF RFC 5245, April 2010.

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 124

IJSER © 2016
http://www.ijser.org

IJSER

